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Abstract
The morphological stability of a two-dimensional cylindrical crystal growing in
a solution at the local growth rate proportional to the squared supersaturation has
been analysed for the first time by the weakly nonlinear technique. A correction
to the stability size, which was determined from the linear stability theory, was
found and analysed. It was shown that in most cases the critical size of the
crystal stability decreased with growing perturbation amplitude. This result
has been discussed in terms of the nonequilibrium phase transition theory.

1. Introduction

Factors responsible for the appearance of complicated three-dimensional structures cannot
be understood if one does not analyse the initial stage when a growing crystal loses its
morphological stability. It is this stage that largely determines the subsequent shape of
the crystal and lends itself to relatively rigorous calculations in analytical terms. Although
the appearance and the evolution of an instability on the crystal surface have been studied
intensively [1], many problems, which present interest from both practical and theoretical
viewpoints, are still not clearly understood [2, 3]. We shall mention two of them, which are
directly related to the present study.

(1) The morphological stability of a growing crystal is traditionally analysed using
the theory of perturbations for solving problems concerned with heat and mass transfers
on a moving boundary [1]. The available experimental studies of the morphological
stability of a growing crystal provide a qualitative support to many inferences that follow
from this theory (for example, the dependence of the size of the crystal stability on the
supersaturation/supercooling, surface properties, the presence of convection, etc). However,
it should be acknowledged that the theory of the stability of freely growing crystals has not so
far been put to a systematic quantitative verification, although it has been developing for over

0953-8984/05/192889+14$30.00 © 2005 IOP Publishing Ltd Printed in the UK 2889

http://dx.doi.org/10.1088/0953-8984/17/19/006
mailto:mlm@ecko.uran.ru
http://stacks.iop.org/JPhysCM/17/2889


2890 L M Martyushev and E A Chervontseva

40 years. One of the reasons is the numerous simplifications, which are necessarily introduced
in theoretical calculations even when the initial stage of the instability is concerned. As
a result, the natural aspiration to better clarity and simplicity of the final formulae makes
the correct experimental verification impossible because these simplifications are difficult
(and, sometimes, impossible) to realize in experiments. For example, the behaviour of the
crystal boundary in the presence of perturbations having infinitesimal amplitudes has been
analysed theoretically in sufficient detail (the linear analysis) [1]. However, problems of the
shape perturbation with harmonics of a small, but finite, amplitude (the weakly nonlinear
analysis) have received very little study [4–7], although they present the greatest practical
significance1 and are much easier to analyse experimentally. This is because these problems
are tedious and complicated. The weakly nonlinear analysis was performed earlier only with
respect to the free growth of the crystal nuclei having a simple (spherical or cylindrical)
geometry on the assumption of infinitely fast kinetic processes on the surface (the so-called
diffusion limited regime) [4–6]. It was found that the critical stability size of crystals decreases
virtually at all times as the perturbation is enhanced. This is probably an indication that
these morphological transformations are first-order nonequilibrium phase transitions [2, 3, 8].
However, a considerable limitation of the aforementioned studies is the assumption on a
diffusion mechanism of the growth, i.e. the surface kinetics was disregarded altogether,
although it has a very large effect on the morphological stability [1, 9, 10]. It is known
that surface processes are quite different on atomically smooth and rough surfaces. In the
case of rough surfaces, which have a lot of favourable sites for the attachment of atoms, the
local growth rate of a crystal proves to be proportional to the supersaturation (supercooling)
at the crystallization front. The experimental and theoretical studies demonstrated that this
dependence is observed for the growth from some melts (e.g., cyclohexanol, succinonitrile,
Fe, Ni) [11] and, occasionally, from solutions (e.g., crystallization of NH4Cl from water) [10].
In our later study [7] we made calculations on the assumption that the local growth rate
of the crystal was proportional to the supersaturation. These calculations provided original
data concerning the behaviour of the critical stability radius depending on the perturbation
frequency and amplitude under intermediate and kinetic regimes of the crystal growth. One
more issue, which is significant for both practical applications and the quantitative experimental
verification of the theory of the morphological stability, is calculations of the stability of crystals
with atomically smooth surfaces. In this case, the kinetics of surface processes is determined
not only by elementary exchange events on surface steps, but also by their density. The number
of surface steps depends on the capacity of step generators (dislocations and nuclei), which
considerably changes with the supersaturation. Therefore, the supersaturation (supercooling)
dependence of the growth rate is nonlinear and is nearly quadratic for smooth surfaces [9, 10].
Although this dependence is observed for the growth of crystals from the majority of solutions
and vapours and, also, from some melts, the weakly nonlinear analysis for the morphological
stability has not been performed so far. The reason is largely cumbersome calculations involved
in this considerably nonlinear problem.

(2) The much used linear analysis for the morphological stability does not explain one
feature, which is observed during the nonequilibrium growth of crystals. It turns out that the
crystallization control parameters (for example, supercooling) have a region of values when
crystals of different shapes may appear simultaneously [2, 3, 12–14]. The so-called coexistence
of different morphological phases takes place [2, 3]. In this case, morphologically different
crystals may develop simultaneously both from different nuclei [12] and from one seed [14].

1 These studies allow, in particular, for understanding how various (acoustic, thermal, electromagnetic, etc) effects
and different inhomogeneities near the surface (impurities, air bubbles, etc) affect the morphology (and, hence, crystal
properties).
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A relatively close similarity is noted in the literature concerning classical equilibrium phase
transitions and transitions from one nonequilibrium growth form to another [2, 3]. It is known
that ordinary phase transitions are also accompanied by the coexistence of phases over the so-
called metastable interval. Let us consider a characteristic example, namely the solidification
of water. It is known that water can be supercooled to 40◦ below its traditional solidification
point of 273 K depending on the presence of various perturbations (impurities, etc) [10]. As
a result, both phases of water (ice and liquid) can be observed at temperatures from 233 to
273 K depending on crystallization conditions. Let us emphasize that the more accurate are the
experimental conditions (smoother walls of the crystallization vessels, the absence of foreign
microscopic particles, etc), the stronger the supercooling of water can be. Correspondingly,
the fewer the precautions that are taken in the experiment (the greater the number of various
perturbations), the earlier the water will crystallize. It would be interesting to see if this
regularity holds for morphological transformations. One of the possible theoretical methods
of verification2 is just the weakly nonlinear analysis for the morphological stability,which gives
an explicit dependence of the transition point (the so-called critical size (radius) of the stability)
on the perturbation amplitude. Obviously, if it is found that the crystal stability size decreases
with growing perturbation, these calculations will give an insight into the phenomenon of the
coexistence of morphological phases.

Considering the above-adduced arguments, the weakly nonlinear analysis of the
morphological stability of a freely growing crystal at a quadratic dependence of the local
growth rate on the supersaturation seems to be very important and interesting today. This is
the subject matter of the present study.

2. Problem statement

The mathematical model is constructed as follows. Let us consider a two-dimensional quasi-
steady-state growth of an initially round single crystal in a supersaturated solution under
isothermal and isobaric conditions. The concentration field C is given by the Laplace equation

∇2C = 0, (1)

where ∇2 is the Laplacian operator. The following boundary conditions are used:

C(Rλ) = C∞, (2)

D
∂C

∂ñ

∣
∣
∣
∣
r̃S

= β(C|r̃S − CS)
2, (3)

CS = C0 + C0�K̃ ,

K̃ = r̃2
S + 2(∂ r̃S/∂ϕ)2 − r̃S∂

2r̃S/∂ϕ2

(r̃2
S + (∂ r̃S/∂ϕ)2)3/2

, (4)

where r̃S(ϕ, t) = R + a(t) cos kϕ is the equation for a perturbed boundary; a(t) is the
perturbation amplitude, (a � R); t is the time, ñ is the surface normal, ϕ is the polar angle,
k is a positive integer (perturbation frequency), D is the diffusivity; R is the radius of an
unperturbed round crystal; β is the crystallization kinetic coefficient, which varies from 0
(in the kinetic limited growth regime) to ∞ (in the diffusion limited growth regime); C∞
is the solution concentration at a distance Rλ from the crystal (Rλ � R); CS is the solute
equilibrium concentration near an arbitrary interface;C0 is the solute equilibrium concentration

2 For another method, in which the entropy production is calculated, refer to [3, 8, 15].
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near a flat interface; � is the capillary constant, which is proportional to the surface tension
coefficient [16]; K̃ is the curvature of a distorted circle boundary.

These boundary conditions are typical enough for crystallization from solutions (see, for
example [3, 7, 16]). A squared relationship of the local growth rate and the supersaturation is
explicitly present in (3).

Let us convert to dimensionless variables in (1)–(4) for convenience of the analysis. We
shall use the nucleation radius R∗ = C0�/(C∞−C0) [16] as the length scale. The concentration
field is defined as u = (C − C0)/C0. In this case, the equations (1)–(3) are transformed to

∇2u = 0; (5)

u(ρλ) = �; (6)

α�
∂u

∂n

∣
∣
∣
∣
ρ+δ cos(kϕ)

= (u|ρ+δ cos(kϕ) − uS)
2; uS = K�. (7)

Here n = ñ/R∗, r = r̃/R∗, ρ = R/R∗, δ(t) = a(t)/R∗ and � = (C∞ − C0)/C0 denote
the dimensionless solution supersaturation; K = K̃ R∗, ρλ = Rλ/R∗, and α = D/β�C0

(α → 0 and α → ∞ in the diffusion and kinetic growth regimes respectively).
By analogy with [7], we write ∂

∂n
in (7) through components as

α�
(

∂u
∂r + δk

r2 sin kϕ ∂u
∂ϕ

)

√

1 + δ2k2

r2 sin2 kϕ

∣
∣
∣
∣
∣
ρ+δ cos(kϕ)

= (u|ρ+δ cos(kϕ) − uS)
2. (8)

3. Weakly nonlinear analysis of the morphological stability

3.1. Calculation of the concentration field

Let us present the concentration field as a series in δ:

u(r, ϕ) = u0(r) + u1(r, ϕ)δ + u2(r, ϕ)δ2 + u3(r, ϕ)δ3, (9)

where u0, . . . , u3 denote expansion coefficients.
Substituting (9) into the initial equation (5) and the boundary conditions (6) and (8), we

shall expand each term in a Taylor series about ρ to the third order in a small parameter δ.
In this case, the curvature is

K = K0 + K1δ + K2δ
2 + K3δ

3, (10)

where K0, K1, K2, and K3 are given in the appendix. Equating the coefficients of the same
order of δ on the opposite sides of each equation, we obtain four systems of equations for the
determination of u0(r), u1(r, ϕ), u2(r, ϕ), and u3(r, ϕ):

∇2u0 = 0

u0(ρλ) = �

α�
∂u0

∂r

∣
∣
∣
∣
ρ

= (u0|ρ − K0�)2 (11)

∇2u1 = 0

u1(ρλ) = 0

α�

(
∂2u0

∂r2

∣
∣
∣
∣
ρ

cos(kϕ) +
∂u1

∂r

∣
∣
∣
∣
ρ

)

= ∂u2
0

∂r

∣
∣
∣
∣
ρ

cos(kϕ) + 2u0|ρu1|ρ

+ 2�

(
∂u0

∂r

∣
∣
∣
∣
ρ

K0 cos(kϕ) + u0|ρ K1 + u1|ρ K0

)

− 2�2 K0 K1 (12)
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∇2u2 = 0

u2(ρλ) = 0

α�

(
1

2

∂3u0

∂r3

∣
∣
∣
∣
ρ

cos2(kϕ) +
∂2u1

∂r2

∣
∣
∣
∣
ρ

cos(kϕ)
k

ρ2

∂u1

∂ϕ

∣
∣
∣
∣
ρ

sin(kϕ)

)

= 1

2

∂2u0

∂r2

∣
∣
∣
∣
ρ

cos(kϕ) + 2

(

u0|ρ ∂u1

∂r

∣
∣
∣
∣
ρ

+ u1|ρ ∂u0

∂r

∣
∣
∣
∣
ρ

)

cos(kϕ)

+ 2u0|ρu2|ρ − 2�

[

K0

(
1

2

∂2u0

∂r2

∣
∣
∣
∣
ρ

cos2(kϕ) +
∂u1

∂ρ

∣
∣
∣
∣
ρ

cos(kϕ) + u2|ρ
)

+ K1

(
∂u0

∂r

∣
∣
∣
∣
ρ

cos(kϕ) + u1|ρ
)

+ K2u0|ρ
]

+ �2(K 2
1 + 2K0 K2) (13)

∇2u3 = 0

u3(ρλ) = 0

α�

(
1

6

∂4u0

∂r4

∣
∣
∣
∣
ρ

cos3(kϕ) +
1

2

∂3u1

∂r3

∣
∣
∣
∣
ρ

cos2(kϕ) +
k

ρ2

∂

∂r

(
∂u1

∂ϕ

)∣
∣
∣
∣
ρ

sin(kϕ) cos(kϕ)

− 2

ρ3

∂u1

∂ϕ

∣
∣
∣
∣
ρ

cos(kϕ) +
∂2u1

∂r2

∣
∣
∣
∣
ρ

cos(kϕ) +
k

ρ2

∂u1

∂r

∣
∣
∣
∣
ρ

sin(kϕ) +
∂u3

∂r

∣
∣
∣
∣
ρ

)

= 1

6

∂3u0

∂r3

∣
∣
∣
∣
ρ

cos3(kϕ) + 2

(
1

2
u0|ρ ∂2u1

∂r2

∣
∣
∣
∣
ρ

+
∂u0

∂r

∣
∣
∣
∣
ρ

∂u1

∂r

∣
∣
∣
∣
ρ

+
1

2
u1|ρ ∂2u0

∂r2

∣
∣
∣
∣
ρ

)

cos2(kϕ) + 2

(

u0|ρ ∂u2

∂r

∣
∣
∣
∣
ρ

+ u2|ρ ∂u0

∂r

∣
∣
∣
∣
ρ

)

cos(kϕ)

+ 2u0|ρu3|ρ +
∂u2

1

∂r

∣
∣
∣
∣
ρ

cos(kϕ) + 2u1|ρu2|ρ − 2�K0

(
1

6

∂3u0

∂r3

∣
∣
∣
∣
ρ

cos3(kϕ)

+
1

2

∂2u1

∂r2

∣
∣
∣
∣
ρ

cos2(kϕ) +
∂u2

∂r

∣
∣
∣
∣
ρ

cos(kϕ) + u3|ρ
)

+ 2�2(K0 K3 + K1 K2). (14)

The solution of the Laplace equation in a ring (ρ < r < ρλ) for each i th system can be
written in the form

ui = A0i + B0i ln r +
∞∑

n=1

r−n(Ain cos(nϕ) + Bin sin(nϕ))

+
∞∑

n=1

rn(Ein cos(nϕ) + Fin sin(nϕ)), (15)

where i = 0, 1, 2, 3.

3.1.1. The unperturbed solution (the zeroth order). Substituting (15) with i = 0 into (11)
and equating the coefficients of the corresponding trigonometric functions, we have

A0n = B0n = E0n = F0n = 0, n > 0 (16)

A00 = � − B00 ln ρλ, (17)

B00 = �(2Aλ(ρ − 1) + α ± √

4Aλ(ρ − 1)α + α2)

2A2
λρ

, (18)

where Aλ = ln(ρλ/ρ).
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The concentration field in the solution should satisfy the following two condi-
tions [7–10, 16]:

u|s →
{

�/ρ if α → 0 (the diffusion growth regime);

� if α → ∞ (the kinetic growth regime).
(19)

Therefore, the zeroth-order solution can be expressed as

u0 = � +
�(2Aλ(ρ − 1) + α − √

4Aλ(ρ − 1)α + α2)

2A2
λρ

ln(r/ρλ). (20)

3.1.2. The first-order perturbation solution. As before, substituting (15) with i = 1 into the
boundary conditions (12) and equating the coefficients of the same trigonometric functions
with similar harmonic numbers, we have two first-order nontrivial constants at n = k:

A1k = A1 · ρk
λ, (21)

E1k = −A1 · ρ−k
λ , (22)

where

A1 = 2�2(ρ − 1)(1 − k2) + �B00ρ(α − 2(Aλ(1 − k2) − (ρ − 1))) − 2B2
00 Aλρ

2

ρ2
(

2
(

z − 1
z

)

(�(ρ − 1) − B00ρ Aλ) − αk�
(

z + 1
z

))

z = ρk/ρk
λ.

Therefore, the first-order solution to (12) is

u1(r, ϕ) = A1 · cos(kϕ)

(
ρk

λ

rk
− rk

ρk
λ

)

. (23)

3.1.3. The second-order perturbation solution. In line with the above procedure, we shall
substitute (15) with i = 2 into the boundary conditions (13). Then the trigonometric
function powers are expressed through trigonometric functions of the multiple argument and
the coefficients of the same harmonic numbers are equated. This procedure gives four second-
order nontrivial constants at n = 0 and n = 2k:

B20, A20 = −B20 · ln ρλ, (24)

A2,2k = A2 · ρ2k
λ , (25)

E2,2k = −A2 · ρ−2k
λ , (26)

where B20 and A2 are given in the appendix.
Therefore, the second-order solution can be written in the form

u2(r, ϕ) = B20 ln(r/ρλ) + A2 · cos(2kϕ)

(
ρ2k

λ

r2k
− r2k

ρ2k
λ

)

. (27)

3.1.4. The third-order perturbation solution. We shall substitute (15) with i = 3 into
the boundary conditions (14) and, similarly to the second-order procedure, express the
trigonometric function powers through trigonometric functions of the multiple argument.
Equating the coefficients of the same harmonic numbers, we obtain four nontrivial constants
at n = k and n = 3k:

A3,k, A3,3k,

E3,k = −A3,k · ρ−2k
λ , (28)

E3,3k = −A3,3k · ρ−6k
λ , (29)



Morphological stability of a two-dimensional cylindrical crystal 2895

where A3,k and A3,3k , which are expressed through constants of the previous orders, are given
in the appendix.

Therefore, u3(r, ϕ) can be written as

u3(r, ϕ) = A3,k

ρk
λ

cos(kϕ)

(
ρk

λ

rk
− rk

ρk
λ

)

+
A3,3k

ρ3k
λ

cos(3kϕ)

(
ρ3k

λ

r3k
− r3k

ρ3k
λ

)

. (30)

Therefore, substituting (20), (23), (27) and (30) into (9), one can write the concentration
field u(r, ϕ) as a series in a small parameter δ.

3.2. The critical radius of the morphological stability

The local growth rate V of a crystal to within a positive constant is equal to

V ∼ ∂u

∂n

∣
∣
∣
∣
r=ρ+δ cos(kϕ)

. (31)

We shall substitute u(r, ϕ) into (31) and expand the obtained expression as a series in δ

in the neighbourhood of the radius ρ of an unperturbed crystal:

V = V0 + (V1 cos (kϕ) + V2 cos(2kϕ) + V3 cos(3kϕ))/ρ4, (32)

where

V0 = B00

ρ
+

(

2 A1
z ρk(z2 + 1) + 4B02ρ

2 − B00(k2 − 2)
)

δ2

4ρ3
, (33)

V1 =
(

5

8

A1

z
ρk2(z2 − 1) − k2ρ2 A2

z2
(z4 − 1) +

A2

z2
ρ2k(z4 + 1) − 3

4

A1

z
ρk(z2 + 1)

− A3,kkρ(3−k)(z2 + 1) − B20ρ
2 + 3

8 (k2 − 2)B00

)

δ3

−
(

A1

z
ρkz2 + B00 +

A1

z
ρk

)

δρ2, (34)

V2 = ρ

(

− A1

z
ρk2(z2 − 1) − 2

A2

z2
ρ2k(z4 + 1) +

1

4
(k2 + 2)B00 +

1

2

A1

z
ρk(z2 + 1)

)

δ2, (35)

V3 =
(

−1

8
(3k2 + 2)B00 − 3A3,3kkρ(3−3k)(z6 + 1)

− 1

4

A1

z
ρk(z2 + 1) − 1

2
k3 A1

z
ρ(z2 + 1) − 3k2ρ2 A2

z2
(z4 − 1)

+
A2

z2
ρ2k(z4 + 1) +

7

8

A1

z
ρk2(z2 − 1)

)

δ3. (36)

A traditional method is used to determine the morphological stability radius of a crystal.
For this purpose, in line with [4–7], it is necessary to solve the following equation for ρ:

V1 = 0. (37)

From (37) it is possible to determine the critical size, after which the variation rate of the
initial fundamental harmonic changes its sign from minus (the harmonic decays) to plus (the
harmonic grows).

It is seen from (32) that a contribution to this growth rate is made, in addition to the applied
perturbing harmonic cos(kϕ), by the harmonics cos(2kϕ) and cos(3kϕ). Therefore, some
objections are voiced sometimes [17] as to the use (37) for determination of the morphological
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stability radius. Alternatively to this approach, one may analyse the behaviour of two points
on the perturbed crystal surface [17]. In this case, the local growth rate is calculated from (32)
for two surface points and the conclusion is drawn about stability or instability of the crystal
shape depending on whether the points are coming closer or moving apart. However, this
method is very subjective since one can take a great number of pairs of points and obtain a
number of stable critical radii, which differ not only quantitatively, but also qualitatively [18].

The following is also true of the traditional stability analysis. Higher-order harmonics
(cos(2kϕ) and cos(3kϕ)) result from the increase in the fundamental harmonic amplitude
cos(kϕ) and, therefore, the stability analysis should take into account the growth (decay) rate
of this mode only.

The solution to equation (37) is

ρ = ρ0 + ρ2δ
2, (38)

where ρ0 and ρ2 are expansion coefficients. Since ρ0 cannot be expressed explicitly, it is
numerically determined from the equation W = 0 (see W in the appendix). The explicit
expression for ρ2 is not written here because of its awkwardness.

4. Discussion

The linear stability radius ρ0 and the correction factor of the second order of smallness ρ2 as
a function of α and k are shown in figure 1. According to the calculations (figure 1(a)), the
linear stability radius ρ0 increases with growing perturbation frequency k and the parameter
α. This behaviour agrees qualitatively with the behaviour of the linear stability radius ρ∗

0 ,
which was determined earlier in the case of a linear supersaturation dependence of the local
growth rate [7]. This behaviour can be explained as follows. It is known [1, 9, 10, 16]
that a nonuniform concentration field near the crystal is the primary factor leading to the
morphological instability. Indeed, the top of a perturbation, which appears on the crystal
surface, is in a more supersaturated solution and, therefore, grows faster than the base of
the perturbation (see, specifically, (3)). As a result, the size of the perturbation increases
still more. The surface curvature is the main stabilizing factor [1, 9, 10, 16]: the larger the
convexity, the more easily the molecules detach from the crystal. For this reason, the increase
in the perturbation frequency (when α is fixed) is followed by the growth of the curvature and,
correspondingly, the stabilizing factor is enhanced. In other words, in this case the crystal
loses its stability at a larger critical size. As α increases, the field near the crystal becomes
progressively more uniform, the destabilizing factor decreases and, correspondingly,ρ0 grows.

It is seen from figure 1(b) that the growth of the perturbation amplitude leads mainly to the
decrease in the instability radius as compared to the linear case (the increase is observed only
at the harmonic k = 2 under the diffusion and intermediate growth regimes). This regularity
is also in the qualitative agreement with earlier results [7].

Figures 2(a) and (b) present dependences of the relative differences (ρ∗
0 − ρ0)/ρ0 and

(ρ∗
2 − ρ2)/ρ2 on the parameter α at different perturbation frequencies k. Here ρ∗

2 is the
correction factor of the second order of smallness for the linear supersaturation dependence
of the local growth rate [7]. It is seen from these figures that the square-law supersaturation
dependence of the growth rate causes the increase in the linear radius, while the correction
ρ2 may be different depending on the growth regime. The ρ0 value increases because in the
case of a nonlinear kinetics of the particle attachment to the surface and a relatively small
supersaturation (which is considered in this study) the local growth rate is smaller than in the
case of a linear kinetics. Therefore, if the supersaturation is the same, the crystal will remain
in the stable state longer in the case of the square-law dependence.
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Figure 1. (a) The linear stability radius ρ0 and (b) the correction factor ρ2 as functions of the
parameter α for different perturbation frequencies k. ρλ = 108.

Let us discuss the obtained results in terms of the theory of phase transitions. It was
already stated above that the morphological instability of a crystal may be interpreted as
a nonequilibrium phase transformation from the initial shape of the crystal to its distorted
shape [2, 3]. In this case, ρ0 may be considered as the spinodal, i.e. the instability point relative
to an infinitesimal perturbation [3, 8]. The crystal radius ρ is the stability size in the presence
of some finite perturbations. Figure 3 presents the spinodal and the stability radius of a crystal
at the perturbation δ = ρ0/4 depending on the growth regime. It is seen that ρ is virtually
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k = 4 (+). ρλ = 108.

always smaller than the corresponding spinodal at every perturbation harmonic. Notice that
the spinodal ρ0 at the harmonic k crosses ρ at k + 1 for the intermediate and kinetic growth of
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Figure 3. Critical sizes ρ0 (dashed curve) and ρ (solid curve) (at the perturbation δ = ρ0/4)
depending on the parameter α and k.

the crystal (α is large). As a result, in terms of the adopted formalism, various nonequilibrium
morphological phases may coexist if perturbations of different frequencies and amplitudes are
present in the solution. We shall give two examples (see figure 3). Let a solution contain
perturbations having only two frequencies k = 3 and 4 and amplitudes not larger than ρ0/4.

The first case: several crystals grow from a solution and lgα = 3. Their evolution is
described by the straight line AC (figure 3). According to the calculations, the crystal growth
will be stable up to the point B and the crystals will be round. Starting from the point B some
crystals at localization sites of perturbations will become unstable relative to perturbations with
k = 3, while the other crystals will continue their stable growth. Therefore, crystals having
two shapes—a round shape and like the one shown in figure 4(a)—will be observed over the
interval BC. Starting from the point C (the spinodal point for perturbations with k = 3) the
initial round shape of the crystals will be unstable relative to perturbations with any infinitely
small amplitude and k = 3. Therefore, the probability that a crystal having the initial round
shape occurs after the point C becomes negligibly small and, consequently, all the observed
crystals will be of the type shown in figure 4(a).

The second case: several crystals grow from a solution and lgα = 4.5. In line with the
reasoning adduced in the first case, we may come to the following result. Only initially round
crystals grow over the interval DE. Both round crystals and crystals like those in figure 4(a) can
grow over the interval EF. Crystals of three types—round crystals and those like in figures 4(a)
and (b)—can grow simultaneously starting from the point F and ending with the point G (the
spinodal for perturbations with k = 3). After the point G all remaining round crystals will be
unstable relative to perturbations with k = 3.

Notice also that crystals should not necessarily pass all possible stages during their growth
both in the first and second cases. Specifically, crystallization conditions may change rather
quickly and crystals will stop growing and preserve the shape characteristic of a particular
stage of their growth.
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a b

Figure 4. The shape of crystals when the third, k = 3 (a), and fourth, k = 4 (b), harmonics grow.

So, the obtained results imply the simultaneous growth of crystals having different shapes
under the same nonequilibrium growth conditions. This inference was verified qualitatively in
experiments [12–14]. It should be noted that the intersection of metastable regions (these are
areas between ρ and ρ0 for different k) was also determined analytically using an absolutely
different approach (calculations of the entropy production in a crystallizing system) [3, 8, 15].

5. Conclusion

A weakly nonlinear analysis of the morphological stability of a round crystal was performed for
the first time to the third order of the perturbation theory assuming an arbitrary growth regime
and a square-law dependence of the local growth rate on the supersaturation. It was found that
the crystal stability radius decreased with increasing amplitude of the perturbation harmonics
higher than the second harmonic under all conditions. This observation explained the phe-
nomenon of the coexistence of morphological phases. The obtained results were compared
with the data obtained earlier for a linear dependence of the local growth rate on the supersat-
uration. They were found to be qualitatively similar. Quantitative differences were analysed.

Although the deduced formulae proved to be relatively cumbersome,they seem to be useful
for practical purposes and provide a real opportunity of comparison with experiments. The
most interesting issue in the future will be measurements of the critical crystal stability size at
different amplitudes and frequencies of perturbations in various growth regimes (from diffusion
to kinetic conditions). Such experiments will provide both a more rigorous verification of the
classical theory of the morphological stability and a more careful examination of the analogy
between classical and nonequilibrium phase transitions.
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